If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16(t^2)+12t+950=0
a = -16; b = 12; c = +950;
Δ = b2-4ac
Δ = 122-4·(-16)·950
Δ = 60944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60944}=\sqrt{16*3809}=\sqrt{16}*\sqrt{3809}=4\sqrt{3809}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{3809}}{2*-16}=\frac{-12-4\sqrt{3809}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{3809}}{2*-16}=\frac{-12+4\sqrt{3809}}{-32} $
| -(j+-8)=0 | | 5x+3=4(x+1)+x | | 1,3x-0,5=3,7+x | | x/16.3=38.6 | | 2/3+x=1/2 | | 7b-6=10+6b | | x=2x+68 | | 2z+10-9=3z-6 | | 3m-1m=10 | | -63=-14=7n | | 5x-11=-15+7 | | (6w-1)/5-(3w)=(12w-16)/15 | | 12+7x=6x+7 | | 46+16x=x-54 | | (x+2)²-x²=68 | | 5x-7+7x+24=103 | | 8+6p=5p | | 64=36^2x | | 20d-15=12 | | -7m+3=-4 | | 54/x=x-3 | | 1.5m+4=7m+6 | | 6+11x=7x-12 | | 18÷2d-15=12 | | 4+7k=9k-8 | | 2/5g+6/10=2 | | -99=(-4x+9) | | 5/3=v/1 | | 1/3h+1/4=11/12 | | 4(3–6a)=36 | | -8-8a=-32 | | -16+4x=-34 |